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Presentation Outline 

   Meshes of multi-million element meshes needed even with the 
use of adaptive methods 
 Simulations must be run on massively parallel computers with 

information (mesh) distributed at all times 
 Need an effective parallel mesh infrastructure and associated 

utilities to deal with the mesh and its adaptation 
   Presentation outline 
 Unstructured meshes on massively parallel computers 

 Representations and support of a distributed mesh 
 Dynamic load balancing 
 Mesh adaptation using parallel mesh modification  

 Component-based infrastructure for parallel adaptive analysis 
 Albany computational mechanics environment and testbed 
 Comments on hand-on session materials 
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Parallel Adaptive Analysis 

   Components 
 Scalable FE or FV analysis 

 Form the system of equations 
 Solve the system of equations 

 Parallel unstructured mesh infrastructure 
 Including means to move entities 

 Mesh adaptation procedure 
 Driven by error estimates and/or correction indicators 
 Maintain geometric fidelity 
 Support analysis needs (e.g., maintain boundary layer structure)  

 Dynamic load balancing  
 Rebalance as needed 
 Support predictive methods to control memory use and/or load 
 Fast partition improvement (considering multiple entities) 

   All components must operate in parallel 
 Scalability requires using same parallel control structure for 

all steps – partitioned mesh 
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   Geometry-Based Analysis 
 Geometry, Attribute: analysis domain 
 Mesh: 0-3D topological entities and adjacencies 
 Field: distribution of solution over mesh 
 Common requirements: data traversal, arbitrarily  

attachable user data, data grouping, etc. 
 Complete representation: store sufficient  

entities and adjacencies to get any  
adjacency in O(1) time 

Background 

Geometric model Mesh 

Mesh!

Part!

Regions!

Edges!

Faces!

Vertices!
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Parallel Unstructured Mesh Infrastructure (PUMI) 

Geometric model! Partition model!

Distributed mesh!

 Capability to partition mesh to multiple parts per process 

i!M"0!

j!M1!

1!P"

0!P"
2!P"

 inter-process part  
boundary!

 intra-process part  
boundary!

 Proc j! Proc i!
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Distributed Mesh Data Structure 

Each part Pi  assigned to a process 
 Consists of mesh entities assigned to ith part. 
 Uniquely identified by handle or id plus part number 
 Treated as a serial mesh with the addition of part boundaries  

 Part boundary: groups of mesh  
entities on shared links between  
parts 
 Part boundary entity: duplicated  
entities on all parts for which they  
bound with other higher order  
mesh entities 
 Remote copy: duplicated entity  
copy on non-local part 
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Mesh Migration 

   Purpose: Moving mesh entities between parts 
 Dictated by operation - in swap and collapse it’s the mesh 

entities on other parts needed to complete the mesh 
modification cavity 

 Entities to migrate are determined based on adjacencies 
   Issues 
 A function of mesh representation w.r.t. adjacencies, P- set 

and arbitrary user data attached to them 
 Complete mesh representation can provide any adjacency without 

mesh traversal - a requirement for satisfactory performance 
 Performance issues 

 synchronization, communications, load balance and scalability 
 How to benefit from on-node thread communication (all threads in a 

processor share the same memory address space) 
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 Goals: localizing off-part  
mesh data to avoid inter-process 
communications for  
computations 

 Ghost: read-only, duplicate 
entity copies not on part  
boundary including tag data  

 Ghosting rule: triplet (ghost dim, bridge dim, # layers) 
 Ghost dim: entity dimension to be ghosted 
 Bridge dim: entity dimension used to obtain entities to be ghosted 

through adjacency 
 # layers: the number of ghost layers measured from the part boundary 
 
E.g, to get two layers of region entities in the ghost layer, measured from 
faces on part boundary, use ghost_dim=3, bridge_dim=2, and # layers=2 

Ghosting 
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Two-Level Partitioning to Use MPI and Threads 

9 

  Exploit hybrid architecture of BG/Q, Cray XE6, etc… 
  Reduced memory usage 

  Approach 
 Partition mesh to processes, then partition to threads 
 Message passing, via MPI,  

between processes 
 Shared memory, via pthreads,  

within process 
 Transparent-to-application use of  

pthreads 
i!M!0!

j!M1!

1!P!

0!P! 2!P!

 intra-process part  
boundary!

Process j!Process i!

 inter-process part  
boundary!

Process 1 
Process 2 

Process 3 

Process 4 

pthreads!
 !

pthreads!

 
Pa
rt!

pthreads!
Pi!

pthreads!
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Blue Gene/Q Two Level Partition Results 

AAA mesh: 2M tets, 32 parts, 2 nodes 
SLAC mesh: 17M tets, 64 parts, 4 nodes 
Torus mesh: 610M tets, 4096 parts, 256 nodes 
Test: local migration, all MPI vs. 1 MPI rank/16 threads per node 
Speedup: up to 27% 
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Dynamic Load Balancing 

 Purpose: to rebalance load imbalanced mesh during mesh 
modification 
 Equal “work load” with minimum inter-process 

communications 
 Two tools being used 
 Zoltan Dynamic Services  

supporting multiple dynamic  
partitioners with general control 
of partition objects and weights 

 ParMa – Partitioning using 
mesh adjacencies 
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Dynamic Repartitioning (Dynamic Load Balancing) 

Initialize  
Application!

Partition 
Data!

Redistribute  
Data!

Compute  
Solutions  
& Adapt!

Output 
& End!

 

   Dynamic repartitioning (load balancing) in an application: 
 Data partition is computed. 
 Data are distributed according to partition map. 
 Application computes and, perhaps, adapts. 
 Process repeats until the application is done. 

   Ideal partition: 
 Processor idle time is minimized. 
 Inter-processor communication costs are kept low. 
 Cost to redistribute data is also kept low. 



Static vs. Dynamic: Usage and Implementation 

   Static: 
 Pre-processor to application. 
 Can be implemented serially. 
 May be slow, expensive. 
 File-based interface 

acceptable. 
 No consideration of existing 

decomposition required. 

   Dynamic: 
 Must run side-by-side with 

application. 
 Must be implemented in 

parallel. 
 Must be fast, scalable. 
 Library application interface 

required. 
 Should be easy to use. 
 Incremental algorithms 

preferred. 
 Small changes in input 

result small changes in 
partitions. 

 Explicit or implicit 
incrementally acceptable. 
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Zoltan Toolkit: Suite of Partitioners 

Recursive Coordinate Bisection (Berger, Bokhari)!
Recursive Inertial Bisection (Taylor, Nour-Omid)!

Space Filling Curves  
(Peano, Hilbert) 

Refinement-tree Partitioning  
(Mitchell)!

!Graph Partitioning!
ParMETIS  (Karypis, Schloegel, Kumar)!
Jostle (Walshaw) 

Hypergraph Partitioning & Repartitioning  
(Catalyurek, Aykanat, Boman, Devine, 

Heaphy, Karypis, Bisseling)!
PaToH (Catalyurek) 14"



Geometric Partitioners 

   Goal:  Create parts containing physically close data. 
 RCB/RIB:  Compute cutting planes that recursively divide work. 
 SFC:  Partition linear ordering of data given by space-filling curve. 

   Advantages: 
 Conceptually simple; fast and inexpensive. 
 Effective when connectivity info is not available (e.g., in particle 

methods). 
 All processors can inexpensively know entire decomposition. 
 RCB:  Regular subdomains useful in structured or unstructured 

meshes. 
 SFC:  Linear ordering may improve cache performance. 

   Disadvantages: 
 No explicit control of communication costs. 
 Can generate disconnected subdomains for 

complex geometries. 
 Geometric coordinates needed. 



Topology-based Partitioners 

   Goal:  Balance work while minimizing data 
dependencies between parts. 
 Represent data with vertices of graph/hypergraph 
 Represent dependencies with graph/hypergraph edges  

   Advantages: 
 High quality partitions for many applications 
 Explicit control of communication costs 
 Much software available 

 Serial:  Chaco, METIS, Scotch, PaToH, Mondriaan 
 Parallel:  Zoltan, ParMETIS, PT-Scotch, Jostle 

   Disadvantages: 
 More expensive than  

geometric approaches 
 Require explicit dependence info 



Partitioning using Mesh Adjacencies (ParMA) 

  Mesh and partition model adjacencies represent application data 
more completely then standard partitioning graph 
 All mesh entities can be considered, while graph-partitioning 

models use only a subset of mesh adjacency information. 
 Any adjacency can be obtained in O(1) time (assuming use of 

a complete mesh adjacency structure). 
  Advantages 
 Directly account for multiple entity types – important for the 

solve process –  most computationally expensive step 
 Avoid graph construction  
 Easy to use with diffusive procedures 

  Applications to Date 
 Partition improvement to account for multiple entity types – 

improved scalability of solvers 
 Use for improving partitions on really big meshes 17"



ParMA – Multi-Criteria Partition Improvement 

18 

  Improved scalability of the solve by accounting for balance of 
multiple entity types – eliminate spikes 
  Input: 
 Priority list of mesh entity types to be balanced (region, face, 

edge, vertex)  
 Partitioned mesh with communication, computation and 

migration weights for each entity 
  Algorithm: 
  From high to low priority if separated by ‘>’ (different groups) 

 From low to high dimension entity types if separated by ‘=’ (same group) 
  Compute migration schedule (Collective) 
  Select regions for migration  

(Embarrassingly Parallel) 
  Migrate selected regions (Collective) 

Ex) “Rgn>Face=Edge>Vtx” is the user’s input  
Step 1: improve balance for mesh regions 
Step 2.1: improve balance for mesh edges 
Step 2.2: improve balance for mesh faces 
Step 3: improve balance for mesh vertices 

 

Mesh element selection 



   Example of C0, linear shape function finite elements 
 Assembly sensitive to mesh element imbalances 
 Sensitive to vertex imbalances they hold the dof 

 Heaviest loaded part dictates solver performance 
 Element-based partitioning results in spikes of dofs 
 Diffusive application of ParMA knocks spikes down – 

common for 10% increase in strong scaling 

ParMA Application Partition Improvement 

element imbalance increased from 2.64% to 4.54%!dof imbalance reduced from 14.7% to 4.92%!
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Predictive Load Balancing  

  Mesh modification before load balancing can lead to memory 
problems - common to see 400% increase on some parts 

  Employ predictive load balancing to avoid the problem 
 Assign weights based on what will be refined/coarsened 
 Apply dynamic load balancing using those weights 
 Perform mesh modifications 
 May want to do some local migration 

120 parts with ~30% of 
the average load !

~20 parts with > 200% 
imbalance, peak 

imbalance is ~430%!

Histogram of element imbalance in 
1024 part adapted mesh on Onera M6 
wing if no load balancing is applied 

prior to adaptation.! 20"



Algorithm 
 Mesh metric field at any point P is decomposed into three orthogonal 

direction (e1,e2,e3) and desired length (h1,h2,h3) in each 
corresponding direction. 

  The volume of desired element (tetrahedron) : h1h2h3/6 
  Estimate number of elements to be generated: 
 
 
  “num” is scaled to a good range before it is specified as a weight to 

graph nodes 

Predictive Load Balancing  



General Mesh Modification for Mesh Adaptation 

   Goal is the flexibility of remeshing with added advantages   
  Supports general changes in mesh size including anisotropy 
  Can deal with any level of geometric domain complexity 
  Can obtain level of accuracy desired 
  Solution transfer can be applied incrementally 

   Given the “mesh size field”: 
  Drive the mesh modification loop at the element level 

 Look at element edge lengths and shape (in transformed space) 
  If not satisfied select “best” modification 
 Elements with edges that are too long must have edges split or swapped out 
 Short edges eliminated 

  Continue until size and shape is satisfied or no more improvement possible  

   Determination of “best” mesh modification 
  Selection of mesh modifications based on satisfaction of the element 

requirements 
  Appropriate considerations of neighboring elements 
  Choosing the “best” mesh modification 22"



initial mesh"
(20,067 tets)"

adapted mesh"
(approx. 2M tets)"

Mesh Adaptation by Local Mesh Modification 

   Controlled application of mesh modification operations including 
dealing with curved geometries, anisotropic meshes  

   Base operators 
  swap 
  collapse 
  Split 
  move 

   Compound operators chain single step operators 
  Double split collapse operator 
  Swap(s) followed by collapse operator 
  Split, then move the created vertex 
  Etc. 

Edge collapse"Edge split" face split"

Double split collapse to remove the red sliver"
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  Moving refinement vertices to boundary required mesh modification  
(see IJNME paper, vol58 pp247-276, 2003 ) 

  Coarse initial mesh and the mesh after multiple refinement/coarsening 

 

  Operations to move refinement vertices 

Accounting for Curved Domains During Refinement 

x!
y! z!

Iterations of
adaptations

# of
vertices to
be snapped

# of vertices
snapped by a

reposition

# of vertices
snapped by local

modifications

# of vertices snapped
requiring local re-

triangulations
1 342 204 136 2
2 485 369 110 6
3 340 286 52 2
4 74 34 40 -
5 26 3 23 - 24"



Matching Boundary Layer and Interior Mesh 

   A modification operation on any layer is propagated 
through the stack and interface elements to preserve 
attributes of layered elements. 
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Curved Elements for Higher-Order Methods!

   Requirements"
 Coarse, strongly graded meshes with curved elements"
 Must ensure the validity of curved elements"
 Shape measure for curved elements" ""         "

" - standard straight sided measure in 0-1 format"
" - 0-1 curved measure (det. of Jacobian variation)"

 Element geometric order and level of geometric approximation 
need to be related to geometric shape order"

 Steps in the procedure (for optimum convergence rate)"
 Automatic identification and linear mesh at singular features"
 Generate coarse surface mesh accounting for the boundary layers"
 Curve coarse surface mesh to boundary"
 Curve graded linear feature isolation mesh"
 Generate coarse linear interior mesh"
 Modify interior linear mesh to ensure validity with respect to  

the curved surface and graded linear feature isolation mesh"

€ 

Q =Qs ×Qc

€ 

Qs

€ 

Qc



27!

Example p-Version Mesh!

 Isolation on model edges"

Straight-sided mesh with gradient"

Curved mesh with gradient"



   Parallelization of refinement: perform on each part and 
synchronize at inter-part boundaries. 

   Parallelization of coarsening and swapping: migrate cavity (on-
the-fly) and perform operation locally on one part. 

   Support for parallel mesh modification requires update of 
evolving communication-links between parts and dynamic mesh 
partitioning. 

Parallel Mesh Adaptation 
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Boundary Layer Mesh Adaptation 

  Boundary Layer stacks in P-sets 
  Mesh entities contained in a set are unique, 

and are not part of the boundary of any 
higher dimension mesh entities 

  Migrate a set and constituting entities to 
another part together 
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Parallel Boundary Layer Adaptation!

Initial mesh of 2k elements"

Final mesh of 210k elements"

Refinement and node repositioning"
with limited coarsening and swapping"
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Define desired element size and shape distribution following mesh metric"

Mesh Adaptation to an Anisotropic Mesh Size Field!

:,, 321 eee  Unit vectors associated with  
three principle directions"

:,, 321 hhh Desired mesh edge lengths  
in these directions"

Ellipsoidal in physical space transformed to 
normalized sphere!

Transformation matrix field T(x,y,z)"

Decomposition of boundary layers into layer surfaces (2D) and a thickness (1D) mesh"
In-plane adaptation uses projected Hessian, thickness adaptation based on BL theory"
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Example 2 – M6 Wing 

 

 Overall mesh 

 

 
 Close-up to see 

adaptation in the  
boundary layer  
including intersection 
with shock 



Example of Anisotropic Adaptation 
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Example!

 "Surface of adapted mesh for human abdominal aorta 



Component-Based Construction of Adaptive Loops 

   Building on the unstructured mesh infrastructure 
 Employs a component-based approach interacting through 

functional interfaces 
 Being used to construct parallel adaptive loops for codes 
 Recently used for a 92B element mesh on ¾ million cores 

Overall geometry and slice plane shown! 11B element mesh! 35"



Correction 
Indicator!

Mesh-Based Analysis 

Complete Domain 
Definition 

Physics and Model Parameters 

Component-Based Unstructured Mesh Infrastructure 

Parallel Infrastructure!
 Domain Topology 

Mesh Topology and Partition Control 

Dynamic Load Balancing 

Input Domain Definition 

non-manifold 
model construction 

mesh with fields 

mesh 
 

with fields 

discretization  
parameters 

solution 
 fields 

physical    parameters 

process 
parameters 

PDE’s and 
discretization 
methods 

Postprocessing/visualization!

attributed   
       mesh and  

                   fields 

Mesh Generation 
and Adaptation            geometric 

interrogation 
attributed non-

manifold topology 

mesh 
size  
field 

Solution 
Transfer!

mesh 
 

with fields 



Mapping data between component data structures and 
executing memory management 
 Component integrated using functional interfaces 
 Change/Add components with minimal development costs 
 

 
 
 
 
 

 
 
Comparison of file-based and in-memory transfer for 
PHASTA 
 85M element mesh on Hopper 
 On 512 cores file based took 49 sec and in-memory 2 sec 
 On 2048 cores file based took 91 sec and in-memory 1 sec 

 
 
 
 
 

In-Memory Adaptive Loop 

Adaptive Loop 
Driver PHASTA 

Mesh 
Adaptation 

37!
Compact Mesh and 

Solution Data 
Mesh Data 

Base 
Solution 
Fields 

Field 
API 

Field 
API 

Control! Control!

Field 
Data!

Field 
Data!
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Anisotropic 
correction 
indication!

PHASTA 

Parasolid 

Physics and Model Parameters 

Active Flow Control Simulations 

PUMI!
GMI 

FMDB and Partition Model 

Zoltan and ParMA 

Parasolid 

mesh with fields 

Element order 
B’dry layer info. 

flow field 

physical    parameters 

actuator 
parameters 

NS with turbulence 
Finite elements 

ParaView!

attributed   
       mesh and  

                   fields 

MeshSim and 
MeshAdapt or 

MeshSim Adapt            geometric 
interrogation 

attributed non-
manifold topology 

mesh 
size  
field 

Solution 
Transfer!

mesh 
 

with fields 

mesh 
 

with fields 



Example of Scalable Solver: PHASTA  

   Excellent strong scaling  
 Implicit time integration 
 Employs the partitioned mesh for 

system formulation and solution 
 Specific number of ALL-REDUCE 

communications also required 
 Strong Scaling Results 



Mesh Adaptivity for Synthetic Jets (O. Sahni) 

    fact = 2,300Hz 
α  = 00 

Re ~ O(100,000) 
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Goal Oriented 
Error 

Estimation!

FUN3D from NASA 

Parasolid or 
GeomSim 

Physics and Model Parameters 

Aerodynamics Simulations 

PUMI and/or Simmetrix!
GMI or GeomSim 

FMDB and Partition Model or MeshSim  

Zoltan and ParMA 

Parasolid 

mesh with fields 

FV method 
B’dry layer info. 

flow field 

physical    parameters 

process 
parameters 

NS  
Finite Volumes 

ParaView!

attributed   
       mesh and  

                   fields 

MeshSim and 
MeshAdapt or 

MeshSim Adapt            geometric 
interrogation 

attributed non-
manifold topology 

mesh 
size  
field 

Solution 
Transfer!

mesh 
 

with fields 

mesh 
 

with fields 



Application Result - Scramjet Engine!
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Initial Mesh 

Adapted Mesh 



Anisotropic 
correction 
indication!

PHASTA 

Parasolid 

Physics and Model Parameters 

Adaptive Two-Phases Flow 

PUMI!
GMI 

FMDB and Partition Model 

Zoltan and ParMA 

Parasolid 

mesh with fields 
Zero level set flow field 

physical    parameters 

actuator 
parameters 

NS and level sets 
Finite elements 

ParaView!

attributed   
       mesh and  

                   fields 

Mesh Generation 
and Adaptation            geometric 

interrogation 
attributed non-

manifold topology 

mesh 
size  
field 

Solution 
Transfer!

mesh 
 

with fields 

mesh 
 

with fields 



Adaptive Simulation of Two-Phase Flow!
"
 Two-phase modeling using level-sets  

coupled to structural activation"
 Adaptive mesh control –  

reduces mesh required  
from 20 million elements  
to 1 million elements"



Projection-
based method!

ACE3P from SLAC 

ACIS 

Physics and Model Parameters 

Electromagnetics Analysis 

PUMI and/or Simmetrix!
GMI or GeomSim 

FMDB and Partition Model or MeshSim 

Zoltan and ParMA 

ACIS 

mesh with fields 

Element order 
Integration rule stresses 

physical    parameters 

process 
parameters 

Electromagnetics 
Edge elements 

ParaView!

attributed   
       mesh and  

                   fields 

MeshSim and 
MeshAdapt or 

MeshSim Adapt            geometric 
interrogation 

attributed non-
manifold topology 

mesh 
size  
field 

Solution 
Transfer!

mesh 
 

with fields 

mesh 
 

with fields 



   Adaptation based on 
 Tracking particles  

(needs fine mesh) 
 Discretization errors 

 

   Full accelerator models 
 Approaching 100 cavities 
 Substantial internal structure 
 Meshes with several  

hundred million elements 
 

Adaptive Control Coupled with PIC Method 
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Albany Multiphysics Code Targets Several Objectives 

 A finite element based application development environment 
containing the "typical" building blocks needed for rapid 
deployment and prototyping 

 A mechanism to drive and demonstrate our Agile Components 
rapid software development vision and the use of template-
based generic programming (TBGP) for the construction of 
advanced analysis tools 

 A Trilinos demonstration application. Albany uses ~98 Sandia 
packages/libraries.  

 Provides an open-source computational mechanics 
environment and serves as a test-bed for algorithms under 
development by the Laboratory of Computational Mechanics 
(LCM) destined for Sandia's production codes 

 
 



Main"
"

PDE Assembly"
"
"
"
"

Nonlinear Solvers"

Field Manager"

Discretization"

Albany"
Glue Code"

Nonlinear 
Model 

Nonlinear"
Transient"

Optimization"
UQ"

Analysis Tools"
"
"
"

Iterative"

"
"

Linear Solvers"

"
"
"

Multi-Level"

M"
"
"
"

Mesh Tools"
"

"
"
"
"
"

Mesh"
Adapt"

"
"

Problem 
Discretization 

ManyCore Node 

Multi-Core"
Accelerators"

Application 

Linear Solve 

Input Parser"

Node Kernels"
"
"
"

Regression Testing"

Version Control"
Build System"

Libraries" Interfaces Software Quality Tools" Existing Apps"

PDE Terms"

Load "
Balancing"

Albany – Agile Component Architecture 



PDE Eqs"

Phys-Based Prec."
Sensitivities"

Field Manager"
Discretization Library"

Remeshing"

UQ Solver"

Nonlinear Solver"
Time Integration"

Optimization"

Objective Function"

Local Fill"

Mesh Database"

Mesh Tools"

I/O Management"

Input File Parser"
Utilities"

UQ (sampling)"
Parameter Studies"

Solution Control"

Mesh I/O"

Optimization"

Geometry Database"

Discretizations"

Derivative Tools"

Adjoints"
UQ / PCE"

Propagation"

Constraints"
Error Estimates"

Continuation"

Constrained Solves"

Sensitivity Analysis"
Stability Analysis"

V&V, Calibration"
Parameter List"

Feature Extraction"
Verification!
Visualization"

PostProcessing"

Adaptivity"

Model Reduction"
Memory Management"

System Models"

MultiPhysics Coupling"

OUU, Reliability"

Communicators"

MultiCore"
Parallelization Tools"

Partitioning"
Load Balancing"

Analysis Tools"
   (black-box)!

Physics Fill"

Composite Physics"

Data Structures"

Direct Solvers"

Linear Algebra"

Architecture-"
Dependent Kernels"

Preconditioners"

Iterative Solvers"

Eigen Solver"

System UQ"

Analysis Tools"
   (embedded)!

Matrix Partitioning"

Inline Meshing"

MMS Source Terms"

Grid Transfers"
Quality Improvement"

Mesh Database"

Solution Database"

Runtime Compiler"

Derivatives"

Regression Testing"

Bug Tracking"

Version Control"
Software Quality"

Porting"

Performance Testing"
Code Coverage"

Mailing Lists"

Release Process"

Unit Testing"

Web Pages"

Build System"
Backups"

Agile Toolbox: Capabilities!

Verification Tests"

Search"
Modification Journal"
Checkpoint/Restart"

DOF map"

Mulit-Core"
Accelerators"

Material Models"
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Structural Analysis for Integrated Circuits on BG/Q 

Projection-
based method!

Albany/Trilinos ParaView!

GeomSim 

Physics and Model Parameters 

PUMI and/or Simmetrix!
GMI or GeomSim 

FMDB and Partition Model or MeshSim 

Zoltan and ParMA 

gdsII layout/process data 

gds2 to Parasolid 
Parasolid to GeomSim 

mesh with fields 

Element order 
Integration rule stresses 

attributed   
       mesh and  

                   fields 

physical    parameters 

process 
parameters 

Solid mechanics 
Finite elements MeshSim and 

MeshAdapt or 
MeshSim Adapt            geometric 

interrogation 
attributed non-

manifold topology 

mesh 
size  
field 

Solution 
Transfer!

mesh 
 

with fields 

mesh 
 

with fields 



From Design Data to Geometry for Meshing 

   Need complete non-manifold solid model for: 
 Automatic mesh generation 
 Supporting high-level problem specification 
 Maintaining geometric fidelity during mesh adaptation 

 

   Tool to take design/process data and create solid model 
 Basic design data in 2-D layouts (gdsII/OASIS) 
 3rd dimension must be added  
 Process “knowledge” critical for constructing full geometry 
 Set structures and methods build solid model using modeling 

kernel operations  
 

51"GDS2 layout!
Solid model – constructed from 
layout and process information! Mesh!



Parallel Mesh Generation 

All procedures are fully automatic, user not required to partition 
Surface Meshing 
 Distributes model faces between processes 
 Requires # model faces > # processors to  

scale. In practice this isn’t an issue 

Volume Meshing 
 Load balancing done through spatial decomposition 
 Mesh interior to each part is created, then repartitioning done 

to mesh unmeshed areas between part boundaries 
Mesh Improvement 
 Local operations done  

on each part 
 Local migrations done  

between parts to improve  
elements on part boundaries 
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Parallel Geometry 

Problems 
 CAD kernels not available on computers like BlueGene 
 Even if they were, keeping full geometric model on each 

processor doesn’t scale 
  Simmetrix’ solutions 
 Geometry representation that can be used anywhere 
 Geometry is able to be  

distributed in parallel 
 Only model entities needed for  

mesh on each processor are on  
that processor. Model entities  
migrate with mesh 

 Both discrete and CAD  
geometry supported 
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Parallel Mesh Generation Results 

 Scaling parallel mesh  
generation is difficult 
 No a-priori knowledge of how  

to partition 
 Partitioning must be determined 

as meshing proceeds 
 Results for volume meshing  
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Small Parallel Adaptive Albany Example 
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Initial mesh partition!Initial mesh!

Adapted mesh!



Hands-on Exercise Outline 

   Simmetrix Mesh Generation 
 Video demonstrating Simmetrix mesh generation tools  

   PUMI  
 Air foil with actuator 

 Simmetrix GeomSim Advanced  
Parametric model generated from  
Parasolid model 

 Initial mesh has 93e3 elements and 2 parts 
 Partition via Zoltan  

 Geometric and graph based (ParMetis)  
 Partition to 512 parts on 128 cores 
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Hands-on Exercise Outline 

   PUMI (cont.) 
 Parallel Mesh Adaptation 

 Adapt to 731e3 elements 
with tag based refinement 

 Adapt from 731e3 to  
21e6 elements with an  
analytic size field on 512  
cores 
  Predictive load balancing 

 New mesh vertices  
‘snap’ to Simmetrix  
model  

 Visualization with ParaView 
 Video demonstrating mesh  

adaptation concepts 
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Hands-on Exercise Outline 

   Albany 
 Baseline parallel adaptive elasticity calculation in Albany 
 Visualization with ParView  
 Preconditioner control  
 Adaptive elastic deformation 
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PUMI: Parallel Unstructured Mesh Infrastructure 

   Parallel Capabilities 
 Unstructured 3D meshes w/ mixed element topology  

 Support for higher order elements 
 Direct relation to geometric model 

 Parasolid, ACIS, and discrete models supported 
 Solution based mesh adaptation 
 Static and Dynamic partitioning  

 Integration with Zoltan and ParMA 
 Ghosting 
 Functional interfaces for coupling to analysis codes 

 Existing coupling with PHASTA, Albany/Trilinos, NASA FUN-3D,  
and SLAC ACE3P 

   Download 
 https://redmine.scorec.rpi.edu/projects/pumi 

   More Information 
 https://www.scorec.rpi.edu/pumi 
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Zoltan Toolkit: Suite of Partitioners 

   Capabilities 
 Dynamic load balancing and static data partitioning 

 Geometric, graph-based, hypergraph-based 
 Interfaces to ParMETIS, PT-Scotch, PaToH 

 Graph coloring 
 Graph/matrix fill-reducing or locality-preserving ordering 
 iZoltan interface supports ITAPS mesh interfaces 
 Coupled to PUMI 

   Download 
 http://trilinos.sandia.gov 

   More Information 
 http://www.cs.sandia.gov/Zoltan/ 
 kddevin@sandia.gov 
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ParMA: Partitioning Using Mesh Adjacencies 

   Parallel Capabilities 
 Dynamic partitioning procedures using mesh adjacencies 

and partition model information 
 Any mesh adjacency can be obtained in O(1) time (assuming use of a 

complete mesh adjacency structure). 
 Partition improvement to account for multiple entity types 

 Improved scalability of solvers by reducing peak entity imbalance(s) 
 Avoid graph construction – low memory cost 

 Predictive load balancing for mesh adaptation 
 Avoid memory exhaustion 

 Coupled with PUMI 
   Download (as part of PUMI) 
 https://redmine.scorec.rpi.edu/projects/pumi 

   More Information 
 https://redmine.scorec.rpi.edu/projects/parma 61"



MeshAdapt: Unstructured Mesh Adaptation 

   Capabilities 
 Parallel adaptation of unstructured 3D meshes w/ mixed 

element topology  
 Supports general changes in mesh size including anisotropy 

 Typically driven by a solution field based size field. 
 Can deal with any level of geometric domain complexity 
 Can obtain level of accuracy desired 
 Solution transfer can be applied incrementally 

 Callbacks for application defined transfer procedures. 
 Coupled with PUMI 

   Download 
 https://redmine.scorec.rpi.edu/projects/pumi 

   More Information 
 https://www.scorec.rpi.edu/meshadapt/ 
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Albany: Multiphysics Simulation Environment 

   Capabilities 
 A finite element based application development environment 

for rapid deployment of analysis capabilities. 
  AgileComponents and TBGP enables rapid application and feature 

development 
  Linked to Trilinos linear and nonlinear solvers for scalability 
  AD Jacobian, derivatives for SA and UQ 
  LOCA for continuation, stability analysis, bifurcation tracking 
  160+ example physics applications in test suite 

   Download 
 https://software.sandia.gov/albany 

   More Information 
 Glen Hansen [gahanse@sandia.gov] 
 https://software.sandia.gov/albany/gettingStarted.pdf 
 https://redmine.scorec.rpi.edu/projects/fmdb/wiki/

Building_Albany_and_PUMI_from_Scratch 63"



Closing Remarks 

   A set of tools to support parallel unstructured mesh 
adaptation have been developed 
 Parallel mesh infrastructure  
 Dynamic load balancing 
 Mesh adaptation 
 Support for heterogeneous parallel computers under 

development 
Tools used to develop parallel adaptive simulations 
 Both unstructured mesh finite element and finite volume 

procedures being developed 
 Multiple problems areas – CFD, MHD, EM, solids 
 Can account for semi-structured mesh regions, evolving 

geometry, high order curved meshes 
   More Information: shephard@rpi.edu 

64"


